An Algorithm to Learn Causal Relations Between Genes from Steady State Data: Simulation and Its Application to Melanoma Dataset

نویسندگان

  • Xin Zhang
  • Chitta Baral
  • Seungchan Kim
چکیده

In recent years, a few researchers have challenged past dogma and suggested methods (such as the IC algorithm) for inferring causal relationship among variables using steady state observations. In this paper, we present a modified IC (mIC) algorithm that uses entropy to test conditional independence and combines the steady state data with partial prior knowledge of topological ordering in gene regulatory network, for jointly learning the causal relationship among genes. We evaluate our mIC algorithm using the simulated data. The results show that the precision and recall rates are significantly improved compared with using IC algorithm. Finally, we apply the mIC algorithm to microarray data for melanoma. The algorithm identified the important causal relations associated with WNT5A, a gene playing an important role in melanoma, verified by the literatures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient Characteristics of a Single-Effect Absorption Refrigeration Cycle

This paper deals with a lumped-parameter dynamic simulation of a single-effect LiBr-H2O absorption chiller. In many studies the thermodynamic properties of LiBr-H2O solution were taken from some approximate relations causing the results to be somewhat inaccurate. These relations were used to solve simultaneous differential equations involving the continuity of species constituting the LiBr-H2O ...

متن کامل

AN EQUATION ORIENTED APPROACH TO STEADY STATE FLOWSHEETING OF METHANOL SYNTHESIS LOOP

 An equation-oriented approach was developed for steady state flowsheeting of a commercial methanol plant. The loop consists of fixed bed reactor, flash separator, preheater, coolers, and compressor. For steady sate flowsheeting of the plant mathematical model of reactor and other units are needed. Reactor used in loop is a Lurgi type and its configuration is rather complex. Previously reactor ...

متن کامل

A New Multi-Objective Optimization Method Based on Genetic- Fuzzy Algorithm and its Application in Induction Motor Speed Control

In this paper, a new method based on genetic-fuzzy algorithm for multi-objective optimization is proposed. This method is successfully applied to several multi-objective optimization problems. Two examples are presented: the first example is the optimization of two nonlinear mathematical functions and the second one is the design of PI controller for control of an induction motor drive supplie...

متن کامل

A New Multi-Objective Optimization Method Based on Genetic- Fuzzy Algorithm and its Application in Induction Motor Speed Control

In this paper, a new method based on genetic-fuzzy algorithm for multi-objective optimization is proposed. This method is successfully applied to several multi-objective optimization problems. Two examples are presented: the first example is the optimization of two nonlinear mathematical functions and the second one is the design of PI controller for control of an induction motor drive supplie...

متن کامل

Using a Data Mining Tool and FP-Growth Algorithm Application for Extraction of the Rules in two Different Dataset (TECHNICAL NOTE)

In this paper, we want to improve association rules in order to be used in recommenders. Recommender systems present a method to create the personalized offers. One of the most important types of recommender systems is the collaborative filtering that deals with data mining in user information and offering them the appropriate item. Among the data mining methods, finding frequent item sets and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005